Skip to article frontmatterSkip to article content
Authors
Affiliations
Arizona State University
Brookhaven National Laboratory
Cornell University
Colorado State University
Clemson University
Texas Tech University
Lawrence Berkeley National Laboratory
Argonne National Laboratory
import act
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
import matplotlib.colors as colors
# Set your username and token here!
username = 'nsubhash'
token = 'token-nsubhash2'

# Set the datastream and start/enddates
datastream = 'bnfmetS30.b1'
startdate = '2025-04-01T00:00:00'
enddate = '2025-04-30T23:59:59'

# Use ACT to easily download the data.  Watch for the data citation!  Show some support
# for ARM's instrument experts and cite their data if you use it in a publication
result_met = act.discovery.download_arm_data(username, token, datastream, startdate, enddate)

#datastream = 'bnfaossmpsM1.b1'
#result_smps = act.discovery.download_arm_data(username, token, datastream, startdate, enddate)
[DOWNLOADING] bnfmetS30.b1.20250415.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250428.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250427.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250414.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250418.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250405.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250426.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250402.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250412.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250421.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250407.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250419.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250409.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250403.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250406.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250429.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250425.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250411.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250410.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250430.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250401.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250417.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250423.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250420.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250404.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250422.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250413.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250424.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250408.000000.cdf
[DOWNLOADING] bnfmetS30.b1.20250416.000000.cdf

If you use these data to prepare a publication, please cite:

Kyrouac, J., Shi, Y., & Tuftedal, M. Surface Meteorological Instrumentation
(MET), 2025-04-01 to 2025-04-30, Bankhead National Forest, AL, USA; Long-term
Mobile Facility (BNF), Bankhead National Forest, AL, Supplemental facility at
Falkville (S30). Atmospheric Radiation Measurement (ARM) User Facility.
https://doi.org/10.5439/1786358

ds_met = act.io.read_arm_netcdf(result_met)
ds_met
Loading...
display = act.plotting.TimeSeriesDisplay({'MET': ds_met}, figsize=(15, 10), subplot_shape=(2,))

display.plot('temp_mean', dsname='MET', subplot_index=(0,))
display.plot('rh_mean', dsname='MET', subplot_index=(1,))


# ax2 = display.axes[1].twinx()
# ax2.plot(ds_met.time, ds_met.time, color='orange')

# Plot up a day/night background
display.day_night_background(dsname='MET', subplot_index=(1,))
<Figure size 1500x1000 with 2 Axes>
display = act.plotting.TimeSeriesDisplay({'MET': ds_met}, figsize=(15, 10), subplot_shape=(2,))


display.plot('wspd_vec_mean', dsname='MET', subplot_index=(0,))
display.plot('tbrg_precip_total_corr', dsname='MET', subplot_index=(1,))

# ax2 = display.axes[1].twinx()
# ax2.plot(ds_met.time, ds_met.time, color='orange')

# Plot up a day/night background
display.day_night_background(dsname='MET', subplot_index=(1,))
<Figure size 1500x1000 with 2 Axes>